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The poly-polyphenanthrene family of extended 7r-network strips with mem- 
bers ranging from polyacetylene to graphite is considered in terms of the 
locally correlated valence-bond or Heisenberg Hamiltonian. Resonance theory 
wavefunctions which provide a variational upper bound to the ground state 
energy are developed in a graph-theoretic formalism extendable to more 
general localized wavefunction cluster expansions. The graph-theoretic for- 
malism facilitates the use of general transfer matrix techniques, which are 
especially powerful in application to quasi-one-diraensional systems such as 
are illustratively treated here. It is argued that these strips exhibit states of 
different long-range spin-pairing orderings. Novel properties associated with 
these different resulting phases are briefly indicated, including the possibilities 
of solitonic excitations and the reactivity at the ends of the strips. The 
qualitative arguments are supported by numerical calculations for strips up 
to width 8. 

Key words: 7r-network polymers--Valence-bond model- -  Resonance 
theory - -  Long-range order--  Bond localization - -  Solitonic excitations - -  
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1. Introduction 

Because it includes electron correlation explicitly, the valence-bond model has 
played a fundamental role in understanding chemical bonding since its introduc- 
tion in the early days of quantum chemistry [1]. In physics, the formally identical 
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Heisenberg spin Hamiltonian [2] has been widely applied in the study of the 
electronic properties of infinite many-body systems. While these models are 
readily solved for small finite systems [3] by explicit construction and diagonali- 
zation of the Hamiltonian matrix in a complete basis, they have not been exactly 
solved for infinite systems except for a few special cases (e.g., the ground-state 
energy for the homogeneous 1-dimensional linear chain is known) [4]. Particularly 
for two and three dimensional infinite lattices, various approximate calculations 
have been carried out, often with regard to the statistical mechanics of magnetic 
systems [5]. In this paper we introduce an approximate solution technique for 
the Heisenberg or valence bond model which produces a variational upper bound 
to the ground state energy of strips cut from an infinite 2-dimensional lattice 
such that the longitudinal dimension of the strip is infinite but the transverse 
dimension is small and finite. By extrapolating these finite width results we obtain 
an estimate of, and a bound for, the energy per site of the full 2-dimensional lattice. 

In this paper we will consider systems of chemical interest; specifically, we 
consider strips cut from the 2-dimensional hexagonal(honeycomb) lattice. Each 
site of the lattice can be taken to represent an sp 2 carbon atom with one w-orbital 
perpendicular to the plane of the lattice and with one zr-electron per site. Under 
this interpretation the infinite 2-dimensional lattice represents graphite while 
strips cut from the lattice represent conjugated benzenoid hydrocarbons of infinite 
length. Recent experimental work on linear zr-electron polymers (e.g., polyacety- 
lene) has yielded a number of unusual electronic properties including high 
conductivities. Though not yet fully characterized, some recently synthesized 
polymers have been argued to contain chains of benzenoid hydrocarbons which 
may be viewed as "strips" taken from the 2-dimensional hexagonal lattice [6]. 
Since finite benzenoid hydrocarbons are an especially stable class of organic 
molecules whose relative stabilities have been successfully studied via the valence- 
bond model, we expect that the valence-bond or Heisenberg model should be 
capable of meaningful predictions concerning the stability of ~-electron polymers 
as well [7]. 

To facilitate the evaluation of matrix elements for the infinite-length strips we 
introduce a transfer matrix which effectively builds the contribution from a single 
"link" of the infinite strip into the matrix element. While the transfer matrix 
technique is a powerful general tool which has long been used in statistical 
mechanics [8, 9], and has recently been applied to several graph-theoretic enumer- 
ation problems [t0], it has not yet been widely exploited in the context we 
describe here. In this paper we illustrate the technique by applying it to the series 
of strips of the poly-polyphenanthrene family. The w = 2 (polyphenanthrene) and 
w = 3 members of the family are shown in the lower two pictures in Fig. 1. The 
w = 1 limiting member of the family is cis-polyacetylene while the w = oo limiting 
member is graphite. 

Section 2 of this paper introduces the Heisenberg model Hamiltonian and dis- 
cusses its solution ~ia graph-theoretical valence-bond methods. Sect. 3 generalizes 
the results of Sect. 2 to infinite-length systems. Sect. 4 describes the construction 
of the transfer matrix. Sect. 5 describes the evaluation of overlap and Hamiltonian 
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Fig. 1. The width w = 1, 2, and 3 strips: (cis)- 
polyacetylene, polyphenanthrene, and polyphen- 
anthrephenanthrene 

matrix elements. In Sect. 6 we show how these results simplify in the limit of 
infinite strip length. In Sect. 7 we present the numerical results for the poly- 
polyphenanthrene strips. Section 8 discusses some of the implications of these 
results. 

2. Graph theoretic treatment of the Heisenberg (valence-bond) Hamiltonian 

The Heisenberg Hamiltonian with nearest neighbor interactions only may be 
written as 

H = Y, Jjk(2Sj" Sk+I), (2.1) 
j--k 

where j and k label sites, with j - k  indicating a nearest neighbor pair. The sj 
are spin operators, and 2sj. sk +1 is the exchange operator. In this work we will 
assume that all sites and all bonds of the system are identical, so that all of the 
J~k are equal to the same (positive) constant J. Often J is termed an "exchange 
integral" though it is in fact a more complicated sort of exchange parameter 
-which can simply be chosen empirically [11]. Several authors have emphasized 
that the valence-bond Hamiltonian can be written in exactly the same form as 
Eq. (2.1) [12]. We will therefore make use of standard VB concepts [13] in 
analyzing the solution of (2.1). 

It is well known that, for systems with a bipartite system graph F, a complete 
basis of covalent states can be generated by considering Ruiner diagrams, wherein 
each point of the A (starred) subgraph is joined (spin paired) to one and only 
one point of the B (unstarred) subgraph. Not all Rumer diagrams are linearly 
independent, but a complete, linearly independent, basis can be generated by 
restricting attention to those Rumer diagrams in which no two joining lines cross. 
By way of illustration the independent Ruiner diagrams for benzene are shown 
in Fig. 2a. 

Matrix elements of the Heisenberg Hamiltonian between any two Rumer struc- 
tures R and R' can be found by considering the superposition diagram obtained 
by superimposing the two Rumer diagrams. The superposition diagram partitions 
into different connected pieces, which for singlets are of just two types: small 
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Fig. 2. (a) The independent Ruiner structures for 
benzene. Top line: Kekul6 structures. Bottom line: 
Dewar structures (b) Examples of superposition 
diagrams which can be generated from the Ruiner 
diagrams of part (a) 

islands consisting of  two sites spin-paired in both ket and bra, and big islands 
consisting of  an even number of  four or more sites connected in a cycle. Figure 
2b shows some of the superposition diagrams of benzene and the various 
islands associated with each. For one unnormalized choice of  Rumer state basis, 
the overlap between two Rumer structures is given by Pauling's island counting 
formula [14], 

(RIR ' )  = • 2 i+x, (2.2) 

where i and I are the numbers of small and big islands in the superposition 
diagram for R and R'. Often the lines in the Rumer and superposition diagrams 
are directed, but this is redundant in the present case if the lines are always 
chosen to be directed from a starred to an unstarred site. Then the sign in (2.2) 
is always positive. The matrix elements of the products of  spin operators appearing 
in the Hamiltonian are given in terms of  these overlaps by 

(RIs  j �9 ski R') = ~: f (R[R ' ) ,  (2.3) 

where the factor f is either 3/4 or 0, depending on whether j and k are in the 
same or different islands of  the superposition diagram for R and R'. The sign 
in (2.3) is always negative (for nearest-neighbor pairs) with our choice of  direction 
for lines in superposition diagrams. 

For small systems (2.2) and (2.3) can be used to construct the full Hamiltonian 
matrix which can be diagonalized to yield the exact full singlet manifold. Unfortu- 
nately, the number of  Rumer structures is an exponentially growing function of  
system size, so for larger systems basis truncation approximations are frequently 
employed. 

Chemically, by far the most important basis functions are the Kekul6  structures, 
i.e., those Rumer diagrams which contain only nearest-neighbor spin pairings 
(illustrated in the top line of  Fig. 2a). Alternatively the Kekul6 structures are the 
lowest energy structures and so should make stronger grouhd-state contributions. 
In the simple resonance theory ansatz [15, 16] which has been widely applied to 
benzenoid hydrocarbons, the (singlet) ground-state wavefunction of  an aromatic 
system is expanded in terms of Kekul6 structures only. Furthermore, the 
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Table 1. Comparison of exact and resonance theory 
Heisenberg energies for finite benzenoid hydrocarbons 

L Molecule EEXact/ j  ~ ERT/j b 

1 Benzene -8,606 -8.400 
2 Naphthalene - 15.040 - 14.364 
3 Phenanthrene -21.523 -20.514 
4 Chrysene -27.995 -26.577 
5 Picene -34.471 -32.679 

373 

a [3(a)] 
b Calculated from the finite version of the transfer matrix 

method described in Sects. 4 and 5 

wavefunction is often taken as the unweighted sum over all possible Kekul0 
structures 

I ~ )  = E IK), (2.4) 
K 

which can be viewed as the leading term in a wavefunction cluster expansion. 
The associated resonance-theoretic energy expectation value is 

ER T = (~ [U[~)  (2.5) 

and yields an upper bound to the exact ground-state energy to the VB model for 
the system. In the remainder of the paper we will generally omit the superscript 
RT, but all equations should be understood to refer to resonance theory energy 
and wavefunction approximations. 

In Table 1 we compare the energy calculated from (2.5) with the exact Heisenberg 
energy for a series of small benzenoid hydrocarbons. The resonance theory ansatz 

is seen roughly to reproduce the dependence of the exact ground-state energy 
on system size. Alternatively one can view the restriction to the space of Kekul0 
structures to define a new resonance theory model, the first-order contribution 
of which is just the representation of the Heisenberg (VB) model on this subspace. 
Then in lieu of higher-order contributions one could simply reparameterize the 
resonance theory model. Thence our resonance theory ansatz  is a beginning 
toward the study of this (rather chemically appealing) resonance theory model. 
In the next section we will apply the resonance-theory wavefunction to infinite 
strips. 

3. Resonance theory treatment of infinite strips 

The graph theoretic methods in Sect. 2 can be carried over directly to infinite 
systems. The matrix elements in (2.4) are obtained as sums over superposition 
graphs G ~ S(F) where S(F) is the set of all superposition graphs [17]. Now, the 
same G may generally arise from several different ( K I K ' ) .  If  the spin-pairings 
in any big island are interchanged between ket and bra, then the same G still 
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Fig. 3. A width w=3 strip with Q=I  
double bonds at each column position, 
located by (transverse) dotted lines 

occurs, and thus a given G ~ S(F) will arise 2 I(6~ times where I (G)  is the number  
of  big islands in G. Using this fact and (2.2) we obtain 

(OleO) = E 2~(G)41(~. (3.1) 
G ~ S ( F )  

A similar analysis of  the Hamiltonian matrix element over ItS> leads to 

<r = - g J  E N(G,  r)2 '(~)4 "~) ,  (3.2) 
G e S ( F )  

where N(G,  F) is the number  of  bonds in F such that both ends of  the bond are 
in the same island of  (3. In Sect. 4 we utilize the fact that the requisite matrix 
elements in (3.1), and also in (3.2), are graph-theoretic generating functions to 
develop a transfer matrix method to evaluate the infinite sums. 

For systems with translational symmetry, a useful simplification occurs in that 
the Hamil tonian matrix is asymptotically block diagonal [7]. For the members 
of  the sequence of  graphs in Fig. l, it can be seen that for a given Kekul~ structure, 
the number,  Q, of  longitudinal bonds at any position along the strip must be the 
same. As an example consider Kekul6 structures for a width w = 3 strip. Two 
such Kekul6 structures are shown in Figs. 3 and 4. There various (local) positions 
along the polymer  strip are identified by transverse dotted lines. Note that for 
the Kekul6 structure of  Fig. 3, every position has exactly one longitudinal spin- 
pairing; moreover,  no matter  how the Kekul6 structure is continued to either the 
right or the left, this statement remains true. Similar comments apply to the 
Kekul6 structure of  Fig. 4, where in this case there are exactly two longitudinal 
spin-pairings at every position. In fact, the number  Q of  longitudinal spin-pairings 
at any position for a Kekul6 structure of  width w is fixed down the entire length 
of  the strip. (This may be proved as in section 5 of  Ref. [18].) Kekul6 structures 
with any (integer) value for Q from 0 to w are possible, and since the value of 
Q at one position implies the same value everywhere, the value of Q identifies 
a particular type of long-range order. 

I I I i 

Fig. 4. A width w = 3 strip with Q = 2 
double bonds at each position located 
by (transverse) dotted lines 
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Kekul6 states with different Q values do not mix together in the limit of long 
strips. To see this, first note that, if IK) and IK') are two normalized Kekul6 states 
with Q and Q ' ~  Q, then IK) and IK') differ in every one of the (say L) positions 
along the whole length of the strip. Next note that the overlap (KIK')  is propor- 
tional to s L where s is the overlap per position and s < 1. Thus ( K I K ' ) - O  as 
L - ~ ,  and likewise for the matrix element over any ordinary operator which 
effects a significant change at no more than a few positions. As a consequence 
the Hamiltonian (and overlap) matrix on the Kekul6 basis is asymptotically block 
diagonal with regard to Q. Each block corresponds to a different long-range 
spin-pairing order as identified by the resonance quantum number Q. 

Because Kekul6 states of different Q do not mix, the resonance theory wavefunc- 
tion (2.4) is restricted to 

[0Q)= ~ {K), (3.3) 
K--Q 

where the sum is restricted to all Kekul6 structures with a given resonance 
quantum number Q, with the ground state being that Q which minimizes the 
energy 

(~bqlHl~Q) (3.4) 
E ~  (g'olg'o) " 

The restriction to Kekul6 structures having a given Q will limit the sums in (3.1) 
and (3.2) to G r So(F) where So(F) is the set of all superposition graphs associated 
with Q and embeddable in F. 

4. Construction of the transfer matrix 

A general approach for treating generating functions, such as those in (3.1) and 
(3.2), is the "transfer matrix" method often used in statistical mechanics [8, 9]. 
To develop this approach, consider an example superposition graph G with Q = 1 
on a width w = 2 strip. Such an example is found in Fig. 5, where vertical dotted 
lines identify positions along the strip. To a given G we associate at each position 
a local state which is specified by: (a) a designation of which lattice links (of  F) 
at the given position occur in G; and (b) a designation of which pairs of  occupied 
lattice links are connected together by a sequence of G-bonds entirely to the left 
of  the given position. The labels for the local states are also given in Fig. 5. Some 
details of the generation of  local states for wider strips are described in Appendix 
A. We see that G determines the sequence of  local states in each column along 
the whole length of  the strip, and conversely the sequence of  local states deter- 
mines G. Thus a G-sum, as in (3.1) or (3.2), can be replaced by a sum over (a 
sequence of) local states. It is then desired to describe the transfer from one local 
state to the succeeding one(s) in a manner somehow "independent"  of  other 
local states elsewhere in the strip. Then G-sums over superposition diagrams can 
be written as multiple sums over (a finite set of) local states and the G-summand 
can be broken into a product of like terms. 
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Fig. 5. An example Q = 1 superposition graph on a width w = 2 strip, and the graph's expression in 
terms of a sequence of  local states, along with associated descriptors 

The labelling of states is simplified by noting that a translation by one position 
followed by reflection (in a longitudinal plane normal to the plane of the strip) 
sends the strip into itself. This property is simply accounted for if local states 
related by this symmetry are given the same "name".  For the superposition 
diagram (w =2,  Q = 1) shown in Fig. 5, the state labels refer to the states shown 
in Fig. 6. For the down positions the states are those of Fig. 6, while for the up 
positions the states are those of Fig. 6 reflected through a horizontal axis. 

To develop the transfer matrix, note that only certain local states may immediately 
follow a given one. For our example case 

a-~ ol,/3, 3' 

f l~ t~  (4.1) 

3' --> c~, 3'. 

Further let i(~, ~) and 1(~, ~) be the number of small and big islands completed 
in going from local state ~: to r at the succeeding position. Then we can define 
a transfer matrix T with columns labelled by local states and rows by possible 
succeeding local states 

f2i(c'~)4s(c'~); ff can follow ~ (4.2) 
h~ [0; ~" cannot follow ~:. 

I 

( I 
I 
I 

I 
T Fig. 6. The three possible local states for Q = 1 and w = 2 
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For the present example one may verify that 

= 2 2 T 0 (4.3) 

21 0 

where the basis is ordered as in (4.1). Now in the expression for (qJ#1~Q) the 
multiple sum over local states is effected by matrix multiplication of the transfer 
matrix; moreover, the elements in (4.2) are defined so as to achieve the correct 
weights. Thus for a strip of length L we have 

(0#l ~bQ) = (t I TLI i), (4.4) 

where ]i) and It), are respectively vectors for the initiating and terminating local 
states (at the left and right ends of the strip). The detailed form of these two 
vectors depends upon the particular nature of the strip ends. If  cyclic boundary 
conditions are instituted, then the overlap would just be the trace of T L. Further 
details of the construction of the (generally non-Hermitian) transfer matrices are 
described in Appendix B. 

5. Evaluation of overlap and Hamiltonian matrix elements 

In our transfer matrix approach various superposition graphs are generated step 
by step (via repeated application of  T) starting from the left end of the strips. 
The same could be done starting from the right end, where the local states would 
be represented by designations interchanging left and right, i.e., the left-going 
local states for w = 2 with Q = 1 would appear like those of Figs. 5 or 6 viewed 
upside down. Then in place of (4.4) the overlap would be (t' I TLli'), with l i') and 
It') being respectively initiating, (terminating) states at the right, (left), end of 
the strip. An alternative, which proves more useful, e.g., on wider strips, involves 
propagating from both ends and joining left- and right-going local states some- 
where on the strip, say between positions n - 1 and n. The associated formula is 

( ~IQ[t~Q) -~ ( i'l TL-nCTn- l [ i ) ,  (5.1) 

where T is the transpose of T and C is a connection matrix effecting this joining. 
Here C~ is nonzero only if the left-going local states ~: can be successfully 
matched together with the right-going local state ~; the nonzero value is a product 
of  factors of  2, and 4, for each small, and big, island completed in the matching. 
In the w = 2, Q = 1 example 

2 " 4  

C = 2 3 0 , (5.2) 

2 . 4  0 

where again the labellings for the rows and columns of C are ordered as in 
Fig. 6. 

Next we turn to the evaluation of matrix elements of the Hamiltonian in (3.2). 
It is convenient to consider the contributions to the matrix element of the 
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I 
n- -1  Fig. 7. An i l lus t ra t ion  for w = 3 of  the 2w - 1 = 5 d i a g o n a l  bonds ,  o f  Eq. (5.3) 

interaction 2sj. Sk separately for the diagonal bonds j ~ k that are located between 
adjacent positions (see Fig. 7) and for the longitudinal bonds j - k  that are 
located at one position (see Fig. 8). For diagonal bonds from the argument 
leading to (4.5) one sees that the (unnormalized) expectation value of 2sj. sk just 
modifies the elements of C involving the matching together of left- and right-going 
local states. That is, if s c and ~" match together (at the position relevant for j -  k) 
with j and k in the same island, then C:e is to be multiplied by -23-; on the other 
hand, if j and k are in different islands C:r is to be replaced by zero. Thus for 
the (unnormalized) expectation value of the sum over all 2 w - 1  diagonal-bond 
interactions between positions n -  1 and n, we have 

n-- l , n  

(fro] ~ 2sj'sklOO)=-~(i'lTL-"VT"-lli), (5.3) 
j - - k  

where V~ is C~ times the number of links j -  k associated to position n such 
that both ends of the bond are in the same island of any one of the superposition 
diagrams associated to the pair ~', ~. For the w = 2, Q = 1 example 

(5.4) 

Next matrix elements for the longitudinal bond interactions at position n, as 
indicated in Fig. 8 are to be evaluated. To achieve this, propagate superposition 
diagrams from the left and right ends up to positions n - 1 and n + 1, respectively. 
Then match the left- and right-going positions together (much as in the two 
preceding paragraphs) while counting the number of position-n longitudinal 

- - g -  

I \ . .L( 
l / l \ ~  
- - i - -  �9 I o - - I ~  ~ \  / 

,_I_/. \ - -  
i I 

n - 1  n + l  Fig. 8. An i l lus t ra t ion  for w = 3 of  the w long i tud ina l  bonds ,  Eq, (5.5) 
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Fig. 9. An e x a m p l e  showing  two  ways  to jo in  
the same two  (oppos i t e ly  p rogress ing)  local  

s tates  at pos i t i ons  n - 1 and  n + 1 
t ! | I 

n - 1  n + l  n - 1  n + l  

links with both ends in the same island. The associated formula entails a connec- 
tion matrix W, 

(6Q[ ~ 2sj-Sklq, Q)=--~ (i'[TL-"-'WT"-'[i). 
j - -k  

(5.5) 

Here Wr is a sum over all the possible ways of matching r in column n -  1 to 
in column n + 1. That there may be more than one way to effect a matching 

(for the present case) is illustrated in Fig. 9. (If there are no ways Wcr is zero.) 
Each term in the sum is a product of two factors: the first factor is the number 
of position-n longitudinal (lattice) bonds with both ends in the same island; and 
the second factor involves 2, and 4, raised to the number of small, and big, islands 
completed in the associated particular way to make the matching between ~ and 
~. For the w = 2, Q = 1 example 

1 . 2 5 + 1 . 2 5 + 2 . 2 2 . 4  1.25 1"23"4+2"2" .44)  
W = 1 �9 25 1 �9 23 4 . (5.6) 

2 . 2 2 . 4 + 2 . 2 . 4  1 . 2 3 . 4  1 . 2 . 4 2 + 2 . 2 0  

Further details of the construction of the (Hermitian) matrices C, V, W are 
discussed in Appendix C. The formulas of (5.1), (5.3), and (5.5) are the desired 
results from which we work. 

6. Asymptotic infinite-strip behavior 

The preceding formulas simplify in the limit of very long strips. The key point 
is that the maximum-magnitude eigenvalue of T dominates as the strip length 
L-> co. This can be seen if T is resolved in terms of its (generally non-adjoint) 
left and right eigenvectors, (/z, II and I/~, r), 

T=~/zl /x  , r) (/x, I[, (6.1) 
/x 

where 

(~, ll/~' , r) = ~(/x,/~'). (6.2) 
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Then substitution of (6.1) into (5.1) and retention of the leading asymptotic term 
yields 

(q,o[~o) ~ (i'lh, I),XL-"(A, r[C[h, r)~"-l(h,  l[i), (6.3) 

where it is supposed that there is a single maximum-magnitude eigenvalue h. 
Similar treatments of  (5.3) and (5.5) yield 

n ,n  --1 

(~'ol Y~ 2s:. SkiOO)'~--3AL-I(i'IA, I)(A, rlVIA, r)(A, lli) 
j -k  (6.4) 

at least when position n is far from both ends of the strip. The ratios of the 
matrix elements of (6.4) to the overlap (6.3) give the expectation values for typical 
interactions, near position n. But as L ~ o o  there is an effective translational 
symmetry, so that L times the sum of these two expectation values gives the 
expectation value of H. Thus we have 

(~,QIHI~,o)  _3 j (X,  r l{V+ W/A}[A, r) (6.5) 
L(q,o[~o ) 2 (a, rJCIA, r) " 

which is the desired expression for the resonance theory energy per site for infinite 
strips in terms of  the maximum eigenvalue and eigenvector of the transfer matrix 
and the three connection matrices I1, W, and C It may be noted that (6.5) is 
explicitly independent of the strip ends, though we did make the implicit pre- 
sumption that the ends are such that (i'IA,/)(A, Ili) # O. 

7. Numerical results 

With the utilization of the transfer matrix technique resonance theory calculations 
on the VB model were carried out on a sequence of poly-polyphenanthrenes. 
Strips of  widths w=  1 to 8 with resonance quantum numbers 0 -  < Q - w  were 
treated. For each choice of  Q for each of  these w values, the resonance energy 
(per site), defined as the difference between the energy per site and the energy 
expectation value of  a single Kekul6 structure, is reported in Table 2 (except for 
the Q = 0 and Q = w cases which have resonance energies of  zero). These results 
may be nicely organized if we plot (for each w) the resonance energies versus 
Q / w  which ranges from 0 to 1 independently of  w and thus may be taken as a 
local bond density for longitudinal bonds. At least for wide strips we expect the 
total resonance energy to depend on this bond density in a smooth way. Thus 
curves of resonance energy versus Q~ w should approach a limiting (w -> 0o) curve, 
as indeed seems to occur. Figure 10 shows the w = 6 and the extrapolated w-> co 
curves. The higher curves (for w = 7, 8) are close between these two curves. 

Several things may be seen from these results. The Q value of the ground-state 
phase approaches w/3, thereby indicating that the or-bonds are equally distributed 
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Table 2 

Resonance Transfer 
Strip quantum matrix Resonance 
width number dimension energy a 
w Q # (w, Q) AE/J 

2 1 3 -0.14745 

3 1 6 -0.16564 
2 6 -0.10853 

4 1 10 -0.15881 
2 20 -0.15300 
3 10 -0.08199 

5 1 15 -0.14664 
2 50 -0.16940 
3 50 -0.12864 
4 15 -0.06533 

6 1 21 -0.13415 
2 105 -0.17294 
3 165 -0.15445 
4 105 -0.10859 
5 21 -0.05417 

7 1 28 -0.12269 
2 196 -0.17044 
3 490 -0.16784 
4 490 -0.13696 
5 196 -0.09326 
6 28 -0.04624 

8 1 36 -0.11257 
2 336 -0.16512 
3 1176 -0.17379 
4 1766 -0.15509 
5 1176 -0.12145 
6 336 -0.08149 
7 36 -0.04033 

a The energy per site of a single Kekul6 reference structure is -0.75 J 

o v e r  the  t h r ee  ( e q u i v a l e n t )  d i r ec t ions  in g raph i t e ,  as a n t i c i p a t e d  [ 18]. T h e  e x t r a p o -  

l a ted  m i n i m u m  r e s o n a n c e  e n e r g y  (at  the  g r a p h i t e  w-~ oo l imi t )  is - 0 . 1 7 9  J a n d  

can  be  c o m p a r e d  w i t h  t he  c o r r e s p o n d i n g  v a l u e  o f  - 0 . 1 5  J fo r  b e n z e n e .  

T h e r e  a p p e a r s  to  be  a p a t t e r n  o f  p e r i o d  3 in w, as is a lso  s u p p o r t e d  in t he  s e c o n d  

p a p e r  f o l l o w i n g  this  one .  T h e  str ips w = 3 m  ( fo r  m = 1, 2, 3 , . . . )  h a v e  a s ta te  

( Q - - m )  v e r y  n e a r  t he  m i n i m u m  (at Q/w = 1 /3)  o f  t he  r e s o n a n c e  e n e r g y  curves  
o f  Fig. 10, a n d  as a c o n s e q u e n c e ,  this  s ta te  is t he  n o n d e g e n e r a t e  ove ra l l  g r o u n d  

state o f  e s p e c i a l  s tab i l i ty  (i.e., l ow  energy) .  I n  C l a r ' s  n o m e n c l a t u r e  [19] these  

w = 3 m  sys tems  are  " a r o m a t i c "  o r  ( for  m > 2) p e r h a p s  s l ight ly  " s u p e r a r o r n a t i c " .  

T h e  s tr ips  w = 3 m + l  ( fo r  m = 0 ,  1 , 2 , . . . )  h a v e  the  Q =  m a n d  Q - - m + l  s tates  

d i s p l a c e d  r e spec t i ve  d i s t ances  o f  a b o u t  1/3w a n d  2/3w to  the  lef t  a n d  r ight  o f  
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Fig. 10. Resonance energy per site versus Q/w 
for w = 6 and the w ~ eo extrapolated curve. 
The solid (and open) dots identify the two 
lowest near-degenerate (and nondegenerate) 
energies for w = 3 (and w = 4) 

the Q / w  =1 minimum in Fig. 10. Since the resonance energy curve is skewed 
with a gentler rise on the right, these two states are nearly degenerate, as verified 
for m = 1 and 2 in Table 2 and as exactly true (by symmetry) for m = 0. For 
smaller m these strips have a somewhat high energy and so are "subaromatic" .  
Which of  the two near  degenerate states Q = m or Q = m + 1 is actually the 
ground-state is likely to be governed by higher-order wavefunction ans~itze, as 
well as by higher-order interactions in the model and interactions with the 
environment. The third class of  strips with w = 3 m + 2  (for m = 0 ,  1, 2 . . . .  ) is 
intermediate in features between the two already described; the Q = m + 1 state 
is the nondegenerate ground state. 

8. Discussion and conclusion 

As we argued in Sect. 2, and based on many years of  qualitative observations by 
organic chemists, resonance theory very often provides qualitative agreement 
with the observed physical and electronic properties of  conjugated ~--electron 
systems. In this section we will pursue several novel qualitative consequences of  
the locally-correlated resonance theory wave-function analysis for the family of  
zr-electron polymers in Fig. 1. The novel features anticipated for this class of  
compounds  may be viewed as a generalization of  those already widely discussed 
for polyacetylene (the w = 1 strip in Fig. 1); some of our discussion parallels 
earlier descriptions for polyacetylene [20]. Thus, while the synthesis and charac- 
terization of  long-chain conjugated zr-electron networks with a more complicated 
structure than polyacetylene (such as the poly-polyphenanthrene strips analyzed 
here) is currently a topic of  considerable interest, we can anticipate theoretically 
a variety of  novel electronic properties for these systems. 

The block diagonalization of the Hamiltonian on the Kekul6 basis into blocks 
labelled by the resonance quantum number  Q implies that there is a discrete set 
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of long-range-spin-pairing order values possible, one for each block, with each 
identifying a ditterent phase (in the thermodynamic sense). An immediate con- 
sequence of  this picture of spin-pairing orderings concerns (partial) bond locali- 
zation. The greater the frequency with which a given lattice link has a 7r-bond 
in the wavefunction for a phase Q (i.e., has the two associated 7r-electrons 
spin-paired together in the Kekul6 structures of that phase), then the greater the 
bond order and the shorter the bond length for the lattice link. These lattice 
distortions in turn change the field in which the electrons move and so enhance 
their localization in bonds. At the extreme values of Q = 0 and Q = w there occur 
just single Kekul6 structures, so that bond localization occurs to the maximum 
extent. 

There are several qualitative features that may be associated with our identification 
of various resonance phases. One aspect concerns the role and nature of the (left 
and right) ends of the polymer strips. First, if one draws a Kekul6 structure on 
a finite strip, then a unique value of Q, say Qo, seems to arise; that is, the nature 
of the strip ends seems to determine Q for the drawing. This is illustrated in 
Figs. 3 and 4 if the pictures there are supposed to exhibit the whole finite strip. 
In particular if the ends are cut of[ "straight", such as in Fig. 3, then it may be 
seen that in a (global) Kekul~ structure Q = 1, regardless of strip width w. Now 
if the energy per "posit ion" is lower for a quantum number Q< different than 
Q0 obtained by drawing in a global Kekul~ structure, then the overall ground 
state for a sufficiently long strip should in the bulk still look like the Q<-phase. 
This can be accomplished by introducing a few "non-bonded"  electrons (or other 
defects) near the ends of the strip, as illustrated in Fig. 11. Of course such a 
structure with Q = Q< is only like a Kekul6 state in the bulk of the strip, away 
from the ends. In such a case the ends with non-bonding electrons (or other 
defects) should be especially reactive. Thus one can anticipate that in an actual 
polymerization process the ends will tend to become accommodated to the 
preferred lowest energy Q value. 

These considerations [21] concerning the ends have some computational implica- 
tions as well. Generally a method should not be restricted to focus only on global 
Kekul6 structures dependent on particular strip ends. For if it were so restricted, 
instead of yielding the correct ground state, the method would identify the 
lowest-lying state of the Q-block "dictated" by the strip ends. One might imagine 

Fig. i I .  The "left" end of  a w = 4  strip, with Q = 2  and a 
non-bonded (unpaired) electron encircled at the left 
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that such (often overlooked) effects can be of  importance for larger peri- 
condensed species of  a dozen or more rings. For the poly-polyphenanthrene 
strips the problem could be by-passed by using cylic boundary conditions. 

Another aspect associated with the various resonance phases concerns the possi- 
bility of solitonic excited states. If a non-bonding ~r-electron is introduced (away 
from the strip ends), then different phases must occur to the left and right of this 
singular electron. Moreover, the difference in Q values for the two phases (which 
this singularity separates) is either AQ = +1 or AQ = -1 ,  depending on whether 
the unpaired electron occurs on a "starred" or "unstarred" site. This circumstance 
is illustrated in Fig. 12. Now such a state would not readily decay directly to a 
lower-lying state such as that associated to either the left or right phase, because 
all these states differ in many positions, when the unpaired electron is well away 
from the ends of  the strip. The unpaired electron could "hop"  a short distance 
and so ultimately travel along the strip. Hence it seems that such an excited state 
should be long-lived and (perhaps) also nondispersive. Thus it has two solitonic 
features [20]. The final feature of solitons, the noninteraction of two impinging 
solitons, should also occur, unless they happen to annihilate to give photon(s) 
and /o r  phonon(s).  If  instead of an unpaired electron, a ~r-electron vacancy or 
additional ~r-electron is placed at the defect site, a charged solitonic excitation 
occurs. I t  is seen that the neutral excitation has charge and spin, q = 0 and s = �89 
while the charged excitations have q = +1 and s = 0. This parallels earlier descrip- 
tions [20] of  excitations in polyacetylene, though the various conclusions there 
are usually justified in terms of  the Hiickel model. 

Qualitatively rather different behavior [22] is anticipated depending on whether 
the lowest energy phases are degenerate or not. If  degenerate, then individual 
single-site solitons should be observable. I f  the phases are very nearly degenerate 
(but not exactly so, as in w = 3 m + 1 strips) then modifications of the environment 
(e.g., pH) could induce the passage of a soliton to effect the change from one 
phase to the other; this might then act as a molecular switching device to monitor 
the environment [23]. If  the lowest energy phase is non-degenerate, then a 
AQ= +1 soliton and AQ = - 1  antisoliton will attract one another, so that the 
amount of high-energy phase between them is limited. In this case even if the 
soliton and antisoliton are of  like charge, confinement occurs, i.e., the attraction 
due to the intervening high-energy phase dominates (strongly) over Coulomb 
repulsion at sufficiently long range. Thus for w=3m and w = 3 m + 2  only 
"bisolitonic" states should be relevant. An additional feature for the present 
strips is that a number (~-w) of soliton (and antisoliton) states should arise 
depending on how the singular electron is spread out transversely, across the strip. 

Fig. 12. An encircled unpaired electron 
separating Q = 1 and Q = 2 phases on the 
left and right 
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Finally there is the question of whether the present ideas persist when the 
restriction to Kekul6 structures is not made. Beyond Kekul6 structures the next 
higher energy Rumer-basis structures that mix most strongly with the Kekul6 
structures are those with a long-bond (or spin-pairing) between sites which are 
not too distant but are non-nearest neighbors. Such a long-bond (as for instance 
in the Dewar structures of benzene in Fig. 2a) may be viewed as a nearby 
soliton-antisoliton pair (since every bond must connect a starred and unstarred 
site) and the admixture into the ground state may be viewed as a vacuum 
fluctuation. That such a long-bond consists of a (bound) soliton-antisoliton pair 
implies that the net change in Q across the long-bond as a whole is zero. That 
is, the long-range order can be preserved, although to a diminished extent. Indeed 
these ideas are already implicitly illustrated in quantitative calculations [24] for 
the VB model of polyacetylene. Moreover, it is of interest to note that if the next 
higher-order corrections to the nearest-neighbor VB model are considered, then 
the Kekul6 structure picture tends to improve [25]. 

In summary, we have illustrated the application of a transfer matrix technique 
for evaluating expectation values for quasi-one-dimensional systems described 
by locally correlated wavefunctions. The technique was illustrated for resonance- 
theory wavefunctions, but could, for instance, also be applied to a wavefunction 
with independent localized pair excitations above an SCF determinant of localized 
orbitals. 

Novel features of the resonance theory wavefunctions for poly-polyphenanthrenes 
have been discussed. The possibility of a resonance quantum number labelling 
different phases is a key focus of interest. Though quantitative results for excited 
states remain for future calculation, several qualitative features were considered 
- particularly in terms of solitons. It was argued that poly-polyphenanthrene 
strips fall into three distinct groups depending on whether the width w = 3m, 
w = 3 m + l ,  or w = 3 m + 2  ( m = 0 ,  1, 2 , . . . ) .  Qualitative aspects of reactivity at 
the ends of  strips of poly-polyphenanthrene were also indicated. Thus it seems 
that our view and the computational technique presented could be of general 
utility in studying extended polymer systems. 

Appendix A. Characterization of local states 

A general characterization of the local states for any strip width w and resonance 
quantum number Q, is needed to represent and generate them on a computer. 
We chose to represent each local state by a w-component vector, say o-, with the 
ith component o'i taking (integer) values detailing the situation at the ith horizon- 
tal lattice bond in the local state being labelled. There are three general situations: 
first cri = 0 if this ith lattice link is not occupied by a spin-pairing; second o-i = i 
if this ith link is occupied by two spin-pairings (constituting a small island); and 
third o-~ - j  ~ i if this ith link is occupied by a single spin-pairing (in a big island) 
with a path of spin-pairings entirely to the left of  the current position connecting 
the spin-pairing at link i to one at link j. Finally, we number the lattice links 
from the innermost strip edge across the strip. Then for the w = 2, Q = 1 example 
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of Fig. 6, the three local states are represented as 

(i) (10) (A1) 

(where the innermost strip edge is considered to be at the top~: 

It is also useful to make an incomplete representation of local states, thereby 
partitioning them into different classes. This class label is simply a vector u with 
the i component giving the number (0, 1, or 2) of spin-pairings occupying the 
ith link in a local state. In the case of Eq. (A1) the class labels uniquely specify 
the local states, though this is (for w - 4) generally not true. For instance the two 
local states of Fig. 13 have the same class label, namely u with 

/'/1 = /22 ---- //3 = U4 = 1. (A2) 

In fact the number of local states in a particular occupancy class is determined 
by the number of allowed ways of pairing up the "singly-occupied" links. In the 
picture labels, as in Fig. 5, this must be done without any of the connecting loops 
(on the left) crossing one another (since on our strips confined to two dimensions 
this would entail the unallowed situation of four spin-pairings incident at the 
same crossing site). Now the number of allowed ways of connecting a fixed 
(even-numbered) set of (singly-occupied) links is a well-known geometric problem 
which is also encountered [13, 15, 26] with Rumer basis states for pairing the 
same (even) number of different orbitals to an overall singlet. Thus if there are 
2p singly-occupied positions in a class there are 

(2p)~ 
(p+ 1)!p!- np (A3) 

corresponding local states. The local states may be thought of as specified by a 
pair of labels: the first being the class label and the second being the "pairing 
path pattern" indicating which pairs of singly-occupied positions are "coupled 
together". This latter label may be viewed as a picture like a Rumer diagram (or 
a sequence of numbers like a Yamanouchi symbol). 

We generated local states first constructing class labels and then the various 
Ruiner-type diagrams associated with each class. The class labels for a given w 
and Q are just the different ways of choosing w numbers to be 0, 1, or 2 such 

I I 
I r 

(L AT / ( '  
i I, 

\ i  
I I 

Fig.  13. T w o  loca l  s ta tes  ( o n  a Q = 2, w = 4 str ip)  b e i n g  in the  

s a m e  o c c u p a n c y  c lass  
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that their sum is 2Q. Letting 2p and d be the number  of  singly- and doubly- 
occupied lattice links in a class label, it is seen that p + d = Q. The number  of  
classes with a given w, p and d is a trinomial coefficient 

w! w! 

( 2 p ) ! d ! ( w - 2 p - d ) !  ( 2 p ) ! ( Q - p ) ! ( w - p - Q ) !  
(A4) 

and recalling (A.3), we see that the number  of local states is 

w! 
# ( w ,  Q ) = ~  ( Q - p ) ! ( w - p - Q ) ! ( p + l ) ! p ! "  

(A5) 

These numbers give the dimension of the space on which the transfer matrix is 
to act. Values for these numbers for 1-< Q-< w -  1 and 2-< w---8 are given in 
Table 2 (also # (w, 0) = # (w, w) = 1). It is seen that the handling of vectors on 
these corresponding spaces is feasable on current minicomputers for strips up 
through width w - 8. 

Appendix B. Treatment of the transfer matrix 

In the determination of the transfer matrix it is convenient to consider whether 
two classes connect. We will consider the values of  matrix elements between 
local states in classes u and v. These lattice-link occupancies on two adjacent 
columns are indicated (for w = 3) in Fig. 14 where we also introduce (temporary) 
labels ai and b s for the occupancies of  the intermediate diagonal lattice links. 
Since each site of  the lattice is to be spin-paired in both bra and ket, the sum of 
the occupancies for the lattice links incident on any site should be 2. Thus 

Vw + al = 2 

Ul + a l  +bx = 2  

v , - l + b l  + a 2 = 2  

u 2 + a  2 + b  2 = 2  (B1) 

Vl + bw-1  + aw = 2 

Uw + a .  = 2 

Fig. 14. An illustration of the identification between lattice links and occupancy labels 

bl 
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V1 



388 G.E. Hite et al. 

as is readily seen from Fig. 14. Now given u and v this set of equations may be 
solved progressively (from top to bottom) for the a~ and bj. If  at any step any 
one of  these equations cannot be satisfied with a; and bj taking allowed occupancy 
values 0, 1, or 2, then there are no transfer matrix elements between local states 
of  the classes u and v; that is, all these transfer matrix elements are zero. If  an 
allowed solution to (B1) is found, then one has an evidently unique connection 
between these two classes; each local state (on the left) in class u is connected 
to a unique local state (on the right) in class v. 

Since the larger transfer matrices turn out to be quite sparse, only (the locations 
and values of) the nonzero elements need be stored. The (right) eigenvector for 
the maximum modulus eigenvalue was found to be easily computed via the power 
method where one simply repeatedly applies T to a vector. Since the Frobenius- 
Perron theorem [27] applies to our current situation, the eigenvector sought has 
all its components of the same phase (which is conveniently chosen to be positive); 
hence a suitable initiating vector for the iterative eigenvalue-eigenvector routines 
is the vector with all components equal. 

Appendix C. The connection matrices 

For the method of computation of C~ consider the pattern ~:, ~'. Through the use 
of  relations as in (B1) it is determined whether ~: and ~" may be adjoined, and if 
so, intervening occupied diagonal lattice links (in big islands or small islands) 
are located (by nonzero a~ and bj). The small islands and their number thence 
are readily identified. Then one searches through ~: for a (big) island edge, i.e, 
~i = j  # i. Once such an edge is located it is " t raced" through the ~, a, b, r pattern: 
one passes from link i, to link j = ~:~, then to the associated a component,  etc. 
until finally returning to the initiating link i. Each traversed lattice link is 
" removed"  so that the big island is purged from the pattern. This search continues 
deleting (and counting) each big island encountered. After so purging each big 
island with links in ~:, the search is continued through any remaining portion of 
~'. Then the desired matrix element is 

C~ = 2ic~'r L~'e~, (C1) 

where ic(~', ~:) and Ic(~', ~:) are the numbers of small and big islands counted in 
the ~, ~ pattern. 

The matrix element V~ is conveniently computed at the same time as C~e, since 
Vr is just C~r times the number Na (~, ~:) of diagonal lattice links with end-points 
in the same island of the ~:, ~" pattern. Contributions to Na (~, ~) come from small 
as well as large islands. The contribution from small islands is simply the number 
of doubly occupied diagonal lattice links, i.e., the number of times that al = 2 
(i = 1 to w) and that bj = 2 (j = 1 to w - 1). For large islands the situation is more 
complicated, since not only must singly occupied diagonal lattice links be counted 
but also the unoccupied diagonal lattice links whose ends are in the same island, 
as illustrated by the example in Fig. 15. The contribution of  this type can be 
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Fig. 15. A big island on a w = 2 strip, with the two unoccupied diagonal links 
indicated by dotted lines having end-points in the same island 
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found by analysis of each individual big island "traced" out in the construction 
of 

To calculate the contribution from nearest-neighbor interactions of longitudinal 
lattice links, it is necessary to know when sites on the ends of a longitudinal link 
are in the same island. For w >--3 it is possible to have the situation where sites 
are in the same (large) island but for which the island's edge does not run along 
the link. This is illustrated in Fig. 16 To identify such cases it is necessary to 
know the occupancies of the diagonal links to the right and to the left of the 
position, say n, being considered. This is available if the local state at the (n + 1)th 
position, ~, and the ( n - 1 )  th position, ~, are specified. If  W~e designates the 
contribution of longitudinal lattice links for all possible intermediate local states 

at the nth position, then Wee requires the consideration of patterns (~, r/, ~) 
spread out over three positions along the strip (rather than just two as for C or 
V). In fact 

Wet = Z I},TCneN,(~, n, ~), (C2) 

where Nt(~, 7, ~) is the number of nearest-neighbor sites on longitudinal lattice 
links at position n such that the two sites of a pair are in the same island of the 
~, 7/, ~ pattern. 

The number Nz(~, 7, ~) (just as Nd(~, ~)) has contributions from small as well 
as large islands. The contribution from small islands is simply the number of 
doubly occupied longitudinal lattice links, i.e., the number of times that 7/i = i. 
For large islands the situation is more complicated, since not only must singly 
occupied longitudinal lattice links be counted, but also the unoccupied longi- 
tudinal lattice links whose ends are in the same island as illustrated by the example 
in Fig. 16. The latter contributions can be found by "tracing" each individual 
big island in the ~, 7, ~ pattern having longitudinal bonding in ~7- 

In (C2) propagation from position n + 1 to n (with T) is envisioned followed by 
connection (with C) between positions n -  1 and n, with T~n. Cne giving the 
appropriate weight factor for completion of big and small islands. But propagation 

Fig. 16. A big island on a w = 3 strip, with the unoccupied longitudinal 
link indicated by a dotted line having end-points in the same island 

l -  

p ....... s  
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from position n - 1  to n (with T) followed by connection (with C) between 
positions n and n + 1 may also be envisioned. Thus 

Y. Tc~C~e =Y~Cc~ �9 T~r Cr (C3) 

This then can provide a partial check on the C and T matrices, used to construct 
W, and IF. 

Finally we note that the various connection matrices need not be stored, which 
is especially useful for W since it is relatively dense. That there is no need for 
storage occurs because only the matrix elements over IA, r) are required. Then, 
for instance, as each element of Wee is generated only its contribution 
(A, rl~') Wcr (~:l,~ , r) to (~, r I WIA, r) is added to a continuously up-dated sum, which 
ultimately becomes the desired matrix element. As mentioned after (C2) the 
product Tc, Cne is just the appropriate weight factor due to the number of big 
and the number of small islands completed in the pattern ~:, ~7, ~'. Since these 
numbers can easily be obtained at the same time Nz(~', ~7, ~:) is calculated, there 
is no need to form the product Tc~C~e and consequently no need to store C. If 
the matrix elements over IA, r) of  C are calculated, then (C3) requires that 

(A, rlCrA, r)--A(A, rlClA, r) (C4) 

and thus provides a more limited check than (C3) on the calculation. 
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